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February 28, 2013

Abstract

The Survivable Software framework (SSW), developed under award AFOSR FA9550-
09-1-0481, uses a synergistic combination of (1) compiler-assisted, aspect-oriented pro-
gram instrumentation, (2) software monitoring with overhead control, (3) runtime ver-
ification with state estimation, and (4) adaptive runtime verification to closely monitor
high-criticality monitor instances, thereby increasing the probability of violation de-
tection and concomitantly allowing for appropriate repair and recovery actions to be
initiated. Applications include online and offline analysis of operating system kernel-
level concurrency, and the analysis of NASA space-mission software. This final report
discusses each of these key components of the Survivable Software framework, and
highlights project accomplishments on a year-by-year basis, including the production
of three PhD dissertations.

1 Introduction

This is the final report for award AFOSR FA9550-09-1-0481, Survivable Software, 6/1/09
to 11/30/12. The PI is Scott Smolka and the co-PIs are Radu Grosu, Klaus Havelund

(NASA JPL), Scott Stoller, and Erez Zadok. The project web site is http://www.fsl.

cs.sunysb.edu/ssw/

This grant was awarded within the Software and Systems program. The original Pro-

gram Manager was David Luginbuhl. Bob Bonneau took over as PM in March 2011.
The award period has been a highly productive one for us. We have published more

than 28 project-related papers, released software and documentation for several project-
related systems, and, as discussed below, made significant advances on a number of research

areas that collectively constitute the Survivable Software (SSW) framework.
The SSW framework comprises the following six key components:

1. InterAspect (IA) [12–14], a highly flexible, aspect-oriented program instrumentation

framework, based on the GCC plug-in architecture.

2. Software Monitoring with Controllable Overhead (SMCO) [6, 8, 9], which uses event
sampling and feedback control to provide cost-effective runtime monitoring with

bounded-overhead guarantees.

3. Runtime Verification with State Estimation (RVSE) [12,16], a technique that allows

a runtime monitor to estimate the probability that a temporal property is satisfied
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void c(item* x)
{
  i = get_count();
  do {
    list.add(x);
    heap.add(x);
    x = x.next;
  }
  i = get_count() - i;
}

void traverse(tree* y)
void traverse(list* y)
{
  i = get_time();
  for(;
      y != NULL;
      y = y->next)
    process(y);
  traverse(y->left);
  traverse(y->right);
  process(y);
  i = get_time() - i;
}

Figure 1: Architectural overview of the Survivable Software framework.

by a run of a program, when there are gaps in the observed execution due to event
sampling.

4. Adaptive Runtime Verification (ARV) [4, 12], a new approach to runtime verifica-
tion in which SMCO, RVSE, and predictive analysis are synergistically combined so

that high-criticality monitor instances are allocated a higher portion of the available
monitoring overhead, thereby increasing the probability of violation detection.

5. Redflag [12,15], a framework that uses compiler-assisted instrumentation for targeted
offline and online analysis of operating system kernel-level concurrency.

6. Hierarchical Simplified Redundancy (HSR), an approach to making software surviv-

able, in which a number of successively simpler versions of each module are devel-
oped. When a runtime error is detected, the system can failover to a simpler but

potentially more robust version of the module in question.

The overall architecture of the SSW framework is given in Figure 1.
The remainder of this report develops along the following lines. Sections 2-6 describe

each of the components of the SSW framework in more detail. Section 7 concludes by
outlining project highlights on a year-by-year basis.

2 InterAspect

In [12–14], we presented the InterAspect instrumentation framework for GCC, a widely
used compiler infrastructure. The addition of plug-in support in the latest release of GCC

makes it an attractive platform for runtime instrumentation, as GCC plug-ins can directly
add instrumentation by transforming the compiler’s intermediate representation. Such

transformations, however, require expert knowledge of GCC internals. InterAspect

addresses this situation by allowing instrumentation plug-ins to be developed using the

familiar vocabulary of Aspect-Oriented Programming: pointcuts, join points, and advice
functions. Moreover, InterAspect uses specific information about each join point in
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a pointcut, possibly including results of static analysis, to support powerful customized
instrumentation.

We have also developed the InterAspect Tracecut extension to generate program
monitors directly from formally specified tracecuts. A tracecut [17] matches sequences of
pointcuts specified as a regular expression. Given a tracecut specification T , InterAspect

Tracecut instruments a target program so that it communicates program events and event
parameters directly to a monitoring engine for T . The tracecut extension adds the neces-

sary monitoring instrumentation exclusively with the InterAspect API.
To illustrate InterAspect’s practical utility, we have developed a number of program-

instrumentation plug-ins that use InterAspect for custom instrumentation. These in-
clude a heap visualization plug-in designed for the analysis of JPL Mars Science Laboratory

software; an integer range analysis plug-in that helps find bugs by tracking the range of
values for each integer variable; and a code coverage plug-in that, given a pointcut and

test suite, measures the percentage of join points in the pointcut that are executed by the
test suite.

The full source of the InterAspect framework is available from the InterAspect

website under the GPLv3 license [10].

3 Software Monitoring with Controllable Overhead

In [6,8,9], we introduced the technique of Software Monitoring with Controllable Overhead
(SMCO), which is based on a novel combination of supervisory control theory of discrete
event systems and linear PID-control theory of continuous systems. SMCO controls mon-

itoring overhead by temporarily disabling monitoring of selected events for as short a time
as possible under the constraint of a user-supplied target overhead ot. This strategy is

optimal in the sense that it allows SMCO to monitor as many events as possible, within
the confines of ot. SMCO is a general monitoring technique that can be applied to any

system interface or API.
We have applied SMCO to a variety of monitoring problems, including: integer range

analysis, which determines upper and lower bounds on integer variable values; and Non-
Accessed Period (NAP) detection, which detects stale or underutilized memory regions.

We benchmarked SMCO extensively, using both CPU- and I/O-intensive workloads, which
often exhibited highly bursty behavior. We demonstrated that SMCO successfully controls
overhead across a wide range of target-overhead levels; its accuracy monotonically increases

with the target overhead; and it can be configured to distribute monitoring overhead fairly
across multiple instrumentation points.

4 Runtime Verification with State Estimation

In [12,16], we introduced the concept of runtime verification with state estimation (RVSE),

and showed how this concept can be applied to estimate the probability that a tempo-
ral property is satisfied by a run of a program when monitoring overhead is reduced by
sampling. In such situations, there may be gaps in observed program executions, making

accurate estimation challenging.
The main idea behind our approach is to use a statistical model of the monitored system

to “fill in” sampling-induced gaps in event sequences, and then calculate the probability
that the property is satisfied. In particular, we appeal to the theory of Hidden Markov

Models [11]. An HMM is a Markov model in which the system being modeled is assumed
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to be a Markov process with unobserved (hidden) states. In a regular Markov model,
states are directly visible to the observer, and therefore state transition probabilities are

the only required parameters. In an HMM, states cannot be observed; rather, each state
has a probability distribution for the possible observations (formally called observation
symbols). The classic state estimation problem for HMMs is to compute the most likely

sequence of states that generated a given observation sequence.
The main contributions of this work are:

• We use HMMs to formalize the RVSE problem as follows. Given an HMM system

model H , temporal property φ, and observation sequence O (an execution trace that
may have gaps due to sampling), compute Pr(φ | O, H), i.e., the probability that

the system’s behavior satisfies φ, given O and H . Note that we use Hidden Markov
Models, meaning that the states of the system are hidden from the observer. This
is because we intend to use machine learning to learn the HMM from traces that

contain only observable actions of the system, not detailed internal states of the
system.

• The forward algorithm [11] is a classic recursive algorithm for computing the prob-

ability that, given an observation sequence O, an HMM ended in a particular state.
This problem is the so-called filtering version of the state estimation problem for

HMMs. We present an extension of the forward algorithm for the RVSE problem
that computes a similar probability, but in this case for the paired execution of an
HMM system model and a monitor automaton for the temporal property φ. We

first present a version of the algorithm that does not consider gaps; in this case,
the states of the monitor are completely determined by O, because the monitor is

deterministic.

• We then present an algorithm that handles gaps. We use a special symbol to mark
gaps, i.e., points in the observation sequence where unobserved events might have

occurred. Gap symbols may be inserted in the trace by the instrumentation when
it temporarily disables monitoring; or, if gaps may occur everywhere, a gap symbol
can be inserted at every point in the trace. When the algorithm processes a gap,

no observation is available, so the state of the monitor automaton is updated prob-
abilistically based on the current state estimation for the HMM and the observation

probability distribution for the HMM. Since the length of a gap (i.e., the number of
consecutive unobserved events) might be unknown, we allow the gap length to be

characterized by a probability distribution.

• We evaluate our RVSE methodology using a case study based on human operators in
a ground station issuing commands to a Mars rover [1]. Sampling of execution traces
is simulated using SMCO-style overhead control [9]. Our evaluation demonstrates

high prediction accuracy for the probabilities computed by our algorithm. It also
shows that our technique is much more accurate than simply evaluating the temporal

property on the given observation sequences, ignoring the gaps.

5 Adaptive Runtime Verification

Adaptive Runtime Verification (ARV) [4] is a new approach to runtime verification in which

overhead control, runtime verification with state estimation, and predictive analysis are
synergistically combined. Overhead control maintains the overhead of runtime verification
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at a specified target level, by enabling and disabling monitoring of events for each monitor
instance as needed.

In ARV, predictive analysis based on a probabilistic model of the monitored system is
used to estimate how likely each monitor instance is to violate a given temporal property
in the near future, and these criticality levels are fed to the overhead controllers, which

allocate a larger fraction of the target overhead to monitor instances with higher criticality,
thereby increasing the probability of detecting a violation if a violation occurs.

Since overhead control causes the monitor to miss events, we use Runtime Verification
with State Estimation (RVSE) to estimate the probability that a property is satisfied by

an incompletely monitored run. A key aspect of the ARV framework is a new algorithm
for RVSE that performs the calculations in advance, dramatically reducing the runtime

overhead of RVSE, at the cost of introducing some approximation error. We have demon-
strated the utility of ARV on a significant case study involving runtime monitoring of

concurrency errors in the Linux kernel.

6 Redflag

In [12,15], we presented Redflag, a framework that uses compiler-assisted instrumentation
for targeted offline and online analysis of operating system kernel-level concurrency.

Although there are previous tools for runtime detection of several kinds of concurrency
errors, they cannot easily be used at the kernel level. Redflag brings these essential tech-

niques to the Linux kernel by addressing issues faced by other tools. First, other tools
typically examine every potentially concurrent memory access, which is infeasible in the

kernel because of the overhead it would introduce. Redflag supports user-configurable tar-
geted monitoring of specified kernel components and data structures, to reduce overhead
and avoid presenting developers with error reports for components they are not responsible

for. Second, other tools do not take into account some of the synchronization patterns
found in the kernel, resulting in false alarms; Redflag is designed to take those patterns

into account.
In offline analysis mode, Redflag uses an efficient logging system to obtain execution

traces that can be analyzed for data races, potential atomicity violations, and incorrect
use of a processor’s weak memory model. Our analysis uses known algorithms that we

enhanced to take into account some specifics of synchronization in the kernel. The most
significant enhancement is the introduction of Lexical Object Availability (LOA) analysis

to deal with multi-stage escape and other complex order-enforcing synchronization. Multi-
stage escape is a sophisticated synchronization pattern in which initialization of a data
structure is divided into phases, and in each phase, specific parts of the data structure

become accessible to specific code segments that may be executed concurrently in other
threads.

In online analysis mode, Redflag can detect atomicity violations as they occur. Redflag
can also perturb the thread schedule, with the goal of creating schedules that lead to

actual atomicity violations. Online mode allows analysis of long executions that generate
too many events to practically log.

Our experience applying Redflag to two Linux file systems and a video driver demon-
strated its effectiveness for analysis of kernel-level concurrency.

7 Project Highlights

Year 1 (6/1/09 to 5/31/10)
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1. Software Monitoring with Controllable Overhead (SMCO) uses control theory to
monitor as many events as possible within the confines of a user-supplied target

overhead. For both CPU- and I/O-intensive, often bursty workloads, we succeeded
in reducing SMCO’s base overhead from 18-20% to a much more acceptable 3-4%.

2. We published a paper [9] on SMCO in the International Journal on Software Tools
for Technology Transfer (STTT).

3. We developed the core functionality of InterAspect, a new Aspect-Oriented Pro-

gramming API that operates at the level of a compiler’s intermediate representa-
tion. The advantages of this approach include the possibility of joinpoint-specific
and static-analysis-aware code weaving for more efficient and effective source-code

instrumentation. We used InterAspect to develop a memory-visualization plug-in
for use by JPL’s Mars Science Laboratory Flight Software team.

4. We also developed a rule-based framework for monitoring sequences of events against

formal requirements expressed in temporal logic. A requirement in our framework
consists of a set of rewrite rules that may contain event patterns involving data vari-

ables, over which concrete events emitted by InterAspect source-code instrumen-
tation are matched. Such data parameterization significantly increases the expressive
power of requirement monitoring.

5. Sean Callanan completed his PhD dissertation [6] on Flexible Debugging with Con-

trollable Overhead.

Year 2 (6/1/10 to 5/31/11)

1. We extended InterAspect, the GCC-based aspect-oriented instrumentation frame-
work developed during the first year of the grant, with a tracecut mechanism that
allows matching of sequences of runtime events against a property specification given

as a regular expression with parameters. Our approach interprets a tracecut specifi-
cation as a finite state machine, and generates the code needed to perform the state

machine transitions.

2. We developed the TraceContract API for trace analysis in the Scala programming
language. TraceContract combines a high-level language with data-parameterized

state machines and temporal logic, and has been adopted by the NASA LADEE
mission for validating spacecraft command sequences.

3. In our efforts to extend the Simplex architecture for dynamic control-system up-
grade to hybrid systems, we designed a high-performance controller for a nonlinear

hybrid model of excitable cells (e.g. cardiac cells, neurons). Our controller uses a
lookup table to achieve the maximum action-potential duration for a given stimulus

magnitude and period, a desired biological response.

4. In conjunction with a Sabbatical-year visit by PI Smolka to co-PI Havelund at NASA

JPL, we started the development of a framework for performing runtime verification
of temporal and quantitative properties in the presence of incomplete traces due to

event sampling. This framework eventually became RVSE [12, 16].

5. Xiaowan Huang completed his PhD dissertation [8] on Compiler-Assisted Software
Model Checking and Monitoring.
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Year 3 (6/1/11 to 5/31/12)

1. Our paper on RVSE [16] in the Second International Conference on Runtime Veri-

fication (RV 2011) received the Best Paper Award.

2. We published a paper [15] on Redflag in ICA3PP 2011 demonstrating how tar-
geted and configurable monitoring of specific kernel data structures, together with

enhanced runtime analysis algorithms, can achieve highly effective kernel-level con-
currency analysis.

3. In a TACAS 2011 paper [5], we introduced and addressed the problem of Model
Repair for Probabilistic Systems. Given a probabilistic system M and a temporal

property ϕ such that M fails to satisfy ϕ, Model Repair seeks to find an M ′ that
satisfies ϕ and differs from M only in the transition flows. Moreover, the cost

associated with modifying M ’s transition flows to obtain M ′ is minimized.

4. In a Scala Days 2011 paper [3] and an FM’11 paper [2], we showed how the TraceCon-
tract DSL (Domain-Specific Language) can be used to write executable specifications
of NASA space-mission flight rules and for monitoring such rules. The DSL offers the

combination of high-level programming with temporal logic, and is currently used
by two NASA missions (SMAP@JPL and LADEE@NASA Ames).

5. We released the source code and documentation for InterAspect (see Section 2),

an open-source framework for writing aspect-oriented GCC plug-ins. Please see [10]
for the InterAspect web site.

Year 4 (6/1/12 to 11/30/12)

1. Extended our technique of Runtime Verification With State Estimation (RVSE)
[12, 16] with peek events : observation symbols of the form peek(Sp), where Sp is a

subset of the states of the monitor (DFSM) representing the temporal property under
investigation. A peek event represents knowledge from an oracle that the DFSM can

only be in one of the states in the set Sp. The incorporation of peek events into
RVSE can significantly improve state estimation [12].

2. Developed a rule-based runtime verification engine in Scala, based on the RETE
algorithm [7]. This work explores the ideas known from well-studied production

systems developed in the field of AI, but in the context of runtime verification. The
algorithm has been modified to suit the RV domain. The implementation is being

used at JPL to analyze telemetry from the Curiosity Rover currently operating in
Mars.

3. Justin Seyster completed his PhD dissertation [12] on Runtime Verification of Kernel-

Level Concurrency Using Compiler-Based Instrumentation.
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